RStudio Code code Log

Copy and paste the code below into the RStudio console to create some graphs. Copy one line at a time. Lines are separated by spaces. Code is in blue.

- **Bar plot**
 - Frequency and Relative Frequency code
  ```r
  y <- c(12,2,1,2,4,5,2,1,1)
  x<- c("Back","Wrist","Elbow","Hip","Shoulder","Knee","Hand","Groin","Neck")
  barplot(y,names.arg=x,xlab="Categories",ylab="Frequency",col="blue",border="black")
  ```

- **Pareto Chart**
 - Frequency code
    ```r
    y <- c(12,2,1,2,4,5,2,1,1)
    names(y) <- c("Back","Wrist","Elbow","Hip","Shoulder","Knee","Hand","Groin","Neck")
    library(qcc)
    pareto.chart(y, xlab = "Categories", ylab="Frequency", col=heat.colors(length(y)), cumperc = seq(0, 100, by = 20),ylab2 = "Cumulative Percentage", main = "Pareto Graph")
    ```
 - Relative Frequency
    ```r
    y <- c(0.4,0.0667,0.033,0.0667,0.133,0.1667,0.0667,0.0333,0.0333)
    names(y) <- c("Back","Wrist","Elbow","Hip","Shoulder","Knee","Hand","Groin","Neck")
    library(qcc)
    pareto.chart(y, xlab = "Categories", ylab="Relative Frequency", col=heat.colors(length(y)), cumperc = seq(0, 100, by = 20),ylab2 = "Cumulative Percentage", main = "Pareto Graph")
    ```

- **Pie Chart**
  ```r
  slices <- c(12, 27,20, 8, 20,12)
  lbls <- c("Not a high school graduate","High school diploma","Some college no degree","Associates degree","Bachelor's degree","Graduate or professional degree")
  pct <- round(slices/sum(slices)*100)
  lbls <- paste(lbls, pct) # add percents to labels
  ```
```r
lbls <- paste(lbls,"\%",sep="\"") # add % to labels

pie(slices, labels = lbls, col = rainbow(length(lbls)), main = "Pie Chart")

- **Histogram**
  - **Frequency**
    ```r
 x <- c(155.40, 208.39, 204.49, 210.20, 322.61, 193.42, 207.79, 134.66, 125.76, 190.72, 236.91,
 127.37, 124.67, 121.25, 243.80, 151.46, 124.85, 167.65, 187.23, 260.00, 140.06, 148.02,
 131.76, 229.18, 162.46, 216.19, 206.29, 120.53, 125.00, 65.00, 210.25, 183.16, 143.52, 256.70,
 271.20, 211.09, 105.00, 227.59, 105.23, 147.70, 209.29, 256.69, 224.35, 125.21, 206.01, 150.56,
 262.99, 223.99, 208.40, 123.41)
    ```
    ```r
 hist(x, main = "Histogram")
    ```
  - **Relative frequency**
    ```r
 x <- c(155.40, 208.39, 204.49, 210.20, 322.61, 193.42, 207.79, 134.66, 125.76, 190.72, 236.91,
 127.37, 124.67, 121.25, 243.80, 151.46, 124.85, 167.65, 187.23, 260.00, 140.06, 148.02,
 131.76, 229.18, 162.46, 216.19, 206.29, 120.53, 125.00, 65.00, 210.25, 183.16, 143.52, 256.70,
 271.20, 211.09, 105.00, 227.59, 105.23, 147.70, 209.29, 256.69, 224.35, 125.21, 206.01, 150.56,
 262.99, 223.99, 208.40, 123.41)
    ```
    ```r
 hist(x, probability = TRUE, main = "Histogram")
    ```
- **Mean**
  1. To find the mean in R you first have to input the data values
  2. Now depending on the type of mean (population or sample) you are looking for you will choose the code accordingly

- Working in the console of RStudio use the following code. Copy the code below one at a time. You can adjust the data values in “x”.
  - **Population Mean/s sample mean**
    ```r
 x <- c(1, 2, 3, 5, 6, 7, 9)
    ```
    ```r
 mean(x)
    ```
  - **Median**
    ```r
 x <- c(1, 2, 3, 5, 6, 7, 9)
    ```
- **Standard Deviation**
  
  - **Population**
    
    \[ x = c(1,2,3,5,6,7,9) \]
    
    \[
    \text{sd}(x) = \sqrt{\frac{\sum((x - \text{mean}(x))^2)}{\text{length}(x)}}
    \]
    
    - **Sample**
      
      \[ x = c(1,2,3,5,6,7,9) \]
      
      \[ \text{sd}(x) \]

- **Mean of group data**
  
  1. put in midpoints using code below.
    
    \[ x = c(11.5,14.5,17.5,20.5) \]
  
  2. include frequency using code below
    
    \[ f = c(4,12,30,14) \]
  
  3. find the mean using code below.
    
    \[ \frac{\sum(x*f)}{\sum(f)} \]

- **Weighted mean**
  
  1. put in weights using code below.
    
    \[ w = c(5,3,4) \]
  
  2. include any data values
    
    \[ x = c(3,2,4) \]
  
  3. find the mean using code below.
    
    \[ \frac{\sum(w*x)}{\sum(w)} \]
• **Standard deviation of grouped data**

1. put in midpoints using code below.
   
   ```
 x<-c(11.5,14.5,17.5,20.5)
   ```

2. include frequency using code below
   
   ```
 f<-c(4,12,30,14)
   ```

3. find the mean using code below.
   
   ```
 mean<-sum(x*f)/sum(f)
   ```

4. Find the standard deviation using the code below.
   
   ```
 sqrt(sum((x-mean)^2*f)/(sum(f)-1))
   ```

• **Five-Number Summary**

   ```
 x<-c(24,16,22,28,26,21,24)
 fivenum(x)
   ```

• **Boxplot**

   ```
 x<-c(24,16,22,28,26,21,24)
 boxplot(x, horizontal=TRUE)
   ```

• **Correlation Coefficient**

   ```
 x<-c(24,16,22,28,26,21,24)
 Y<-c(1,2,3,4,5,6,7)
 cor(x,y)
   ```

• **Scatter plot R code:**

   ```
 x <- c(12, 15, 5, 17, 8, 10, 14, 16, 16, 9)
 y <- c(26.6, 29.3, 10.2, 34.7, 15.8, 22.1, 27.6, 34.9, 32.6, 22.0)
 plot(x, y)
   ```
• Least-Squares Regression Line

```
x <- c(12, 15, 5, 17, 8, 10, 14, 16, 16, 9)
y <- c(26.6, 29.3, 10.2, 34.7, 15.8, 22.1, 27.6, 34.9, 32.6, 22.0)
plot(x, y)
model = lm(y ~ x)
abline(model)
```

• Sum of the Square Residual

```
y <- c(18, 13, 9, 6, 4)
x <- c(1, 3, 3, 6, 7)
y_hat = (-2.1675 * x + 18.67)
y_hat
sum((y - y_hat)^2)
```

• Discrete Probability Distribution

R code (Plot Discrete Probability Distribution):
```
x <- c(0, 1, 2, 3)
y <- c(0.01, 0.1, 0.38, 0.51)
plot(x, y, type = "h", lwd = 2, col = "blue", ylab = "p")
```

Mean and standard deviation:
```
x <- c(0, 1, 2, 3)
y <- c(0.01, 0.1, 0.38, 0.51)
weighted.mean(x, y)
library("Weighted.Desc.Stat")
w.sd(x, y)"
• **Binomial:**

Finding probabilities. Copy and paste the R code on the right.

<table>
<thead>
<tr>
<th>Probability</th>
<th>R code</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P(x = 5))</td>
<td>(\text{dbinom}(5, n, p))</td>
</tr>
<tr>
<td>(P(x \leq 5))</td>
<td>(\text{sum(dbinom(c(0:5),n,p))})</td>
</tr>
<tr>
<td>(P(x < 5))</td>
<td>(\text{sum(dbinom(c(0:4),n,p))})</td>
</tr>
<tr>
<td>(P(3 \leq x \leq 5))</td>
<td>(\text{sum(dbinom(c(3:5), n, p))})</td>
</tr>
<tr>
<td>(P(x \geq 5))</td>
<td>(1 - \text{sum(dbinom(c(0:4),n,p))})</td>
</tr>
<tr>
<td>(P(x > 5))</td>
<td>(1 - \text{sum(dbinom(c(0:5),n,p))})</td>
</tr>
</tbody>
</table>

• **Normal distribution/ same code 8.1 just be careful with the standard deviation**

Finding the area under the curve

<table>
<thead>
<tr>
<th>Type of area</th>
<th>R code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area to the left</td>
<td>(P(x < a)) or (P(x \leq a)) (\text{pnorm}(a, \mu, \sigma))</td>
</tr>
<tr>
<td>Area to the right</td>
<td>(P(x > b)) or (P(x \geq b)) (\text{pnorm}(b, \mu, \sigma, \text{lower.tail}=\text{FALSE}))</td>
</tr>
<tr>
<td>Area in between</td>
<td>(P(a < x < b)) or (P(a \leq x \leq b)) (\text{pnorm}(b, \mu, \sigma) - \text{pnorm}(a, \mu, \sigma))</td>
</tr>
</tbody>
</table>

Finding the x-value

Percentile, \(k \) \(\text{qnorm}(k, \mu, \sigma) \)

Finding a z-value (area to the right)

\(\text{qnorm}(k, \text{lower.tail}=\text{FALSE}) \)

• **Chi-Square Test for Independence**

\(x \leftarrow \text{matrix}(c(600, 720, 93, 63, 142, 51, 112, 355, 119, 144, 459, 127), \text{ncol} = 4, \text{byrow}=\text{TRUE}) \)

colnames(x)<-c("Married", "Widowed", "Divorced/Separated", "Never Married")
rownames(x)<-c("Very Happy", "Pretty Happy", "Not Too Happy")

\(x \leftarrow \text{as.table}(x) \)

\(\text{chisq.test}(x) \)

• **Expected count**

\(x \leftarrow \text{matrix}(c(600, 720, 93, 63, 142, 51, 112, 355, 119, 144, 459, 127), \text{ncol} = 4, \text{byrow}=\text{TRUE}) \)
colnames(x)<-c("Married", "Widowed", "Divorced/Separated", "Never Married")

rownames(x)<-c("Very Happy", "Pretty Happy", "Not Too Happy")

x<-as.table(x)

c<-chisq.test(x)

round(c$expected,2)

- **One-Way ANOVA**

 Example R code

 1. create a data frame with one categorical and one numerical column.

 * For categorical data use "", see code below:

     ```r
     x<-c("Face-Face","Face-Face","Face-Face","Face-Face","Face-Face","Face-Face","Face-Face","Hybrid","Hybrid","Hybrid","Hybrid","Hybrid","Hybrid","Hybrid","Online","Online","Online","Online","Online","Online","Online")
     ```

 * For numerical data use the code below:

     ```r
     y<-c(88, 76, 73, 65, 72, 93, 61,85,74,81, 55, 90, 68, 77,56, 75, 58,64,60,70,66, 91,91,64)
     ```

 2. Create a table in r

     ```r
     df<-data.frame(x,y)
     ```

 3. Use the following to set your model and apply one-way ANOVA in R

     ```r
     anova<-aov(y~x,data=df)
     ```

 4. Print your summary

     ```r
     summary(anova)
     ```