RStudio Code code Log

Copy and paste the code below into the RStudio console to create some graphs. Copy one line at a time. Lines are separated by spaces. Code is in blue.

- Bar plot

```
    - Frequency and Relative Frequency code
y <- c(12,2,1,2,4,5,2,1,1)
x<- c("Back","Wrist","Elbow","Hip","Shoulder","Knee","Hand","Groin","Neck")
barplot(y,names.arg=x,xlab="Categories",ylab="Frequency",col="blue",border="black")
```

- Pareto Chart
- Frequency code
$y<-c(12,2,1,2,4,5,2,1,1)$
names(y) <- c("Back","Wrist","Elbow","Hip","Shoulder","Knee","Hand","Groin","Neck")
library(qcc)
pareto.chart(y, xlab = "Categories", ylab="Frequency", col=heat.colors(length(y)), cumperc = seq(0, 100, by = 20),ylab2 = "Cumulative Percentage", main = "Pareto Graph")
- Relative Frequency
y <- c(0.4,0.0667,0.033,0.0667,0.133,0.1667,0.0667,0.0333,0.0333)
names(y) <- c("Back","Wrist","Elbow","Hip","Shoulder","Knee","Hand","Groin","Neck")
library(qcc)
pareto.chart(y, xlab = "Categories", ylab="Relative Frequency", col=heat.colors(length(y)), cumperc = seq(0, 100, by = 20),ylab2 = "Cumulative Percentage", main = "Pareto Graph")
- Pie Chart
slices <- c(12, 27,20, 8, 20,12)
lbls <- c("Not a high school graduate", "High school diploma", "Some college no degree", "Assciates degree", "Bachelor's degree","Graduate or professional degree")
pct <- round(slices/sum(slices)*100)
lbls <- paste(lbls, pct) \# add percents to labels
lbls <- paste(lbls,"\%",sep="") \# ad \% to labels
pie(slices,labels = lbls, col=rainbow(length(lbls)),main="Pie Chart")
- Histogram
- Frequency
x<-c(155.40, 208.39, 204.49,210.20, 322.61, 193.42, 207.79, 134.66,125.76, 190.72, 236.91, 127.37, 124.67, 121.25,243.80, 151.46, 124.85, 167.65,187.23, 260.00, 140.06, 148.02, 131.76,229.18, 162.46, 216.19, 206.29, 120.53, 125.00, 65.00,210.25, 183.16, 143.52,256.70 ,271.20, 211.09, 105.00, 227.59, 105.23, 147.70,209.29, 256.69, 224.35, 125.21, 206.01,150.56, 262.99, 223.99, 208.40, 123.41)
hist(x , main = "Histogram")
- Relative frequency
x<-c(155.40, 208.39, 204.49,210.20, 322.61, 193.42, 207.79, 134.66,125.76, 190.72, 236.91, 127.37, 124.67, 121.25,243.80, 151.46, 124.85, 167.65,187.23, 260.00, 140.06, 148.02, $131.76,229.18,162.46,216.19,206.29,120.53,125.00,65.00,210.25,183.16,143.52,256.70$,271.20,211.09, 105.00, 227.59, 105.23, 147.70,209.29, 256.69, 224.35, 125.21, 206.01,150.56, 262.99, 223.99, 208.40, 123.41)
hist(x,probability = TRUE, main = "Histogram")

- Mean

1. To find the mean in R you first have to input the data values
2. Now depending on the type of mean (population or sample) you are looking for you will choose the code accordingly

- Working in the console of RStudio use the following code. Copy the code below one at a time. You can adjust the data values in " x ".
- Population Mean/ sample mean
$x<-c(1,2,3,5,6,7,9)$
mean(x)
- Median
$x<-c(1,2,3,5,6,7,9)$
median(x)
- Standard Deviation
- Population
$x<-c(1,2,3,5,6,7,9)$
sqrt(sum((x-mean(x))^2)/length(x))
- Sample
$x<-c(1,2,3,5,6,7,9)$
$s d(x)$
- Mean of group data

1. put in midpoints using code below.
$x<-c(11.5,14.5,17.5,20.5)$
2. include frequency using code below
$\mathrm{f}<-\mathrm{c}(4,12,30,14)$
3. find the mean using code below.
$\operatorname{sum}(x * f) / \operatorname{sum}(f)$

- Weighted mean

1. put in weights using code below.
$w<-c(5,3,4)$
2. include any data values
$x<-c(3,2,4)$
3. find the mean using code below.
$\operatorname{sum}\left(w^{*} x\right) / \operatorname{sum}(w)$

- Standard deviation of grouped data

1. put in midpoints using code below.
$x<-c(11.5,14.5,17.5,20.5)$
2. include frequency using code below
f<-c(4,12,30,14)
3. find the mean using code below.
mean<-sum ($\mathrm{x}^{* \mathrm{f}}$)/sum(f)
4. Find the standard deviation using the code below.
sqrt(sum((x-mean)^2*f)/(sum(f)-1))

- Five -Number Summary
$x<-c(24,16,22,28,26,21,24)$
fivenum(x)
- Boxplot
$x<-c(24,16,22,28,26,21,24)$
boxplot(x,horizontal=TRUE)
- Correlation Coefficient
$\mathrm{x}<-\mathrm{c}(24,16,22,28,26,21,24)$
Y<-c(1,2,3,4,5,6,7)
$\operatorname{cor}(x, y)$
- Scatter plot R code:
$x<-c(12,15,5,17,8,10,14,16,16,9)$
$y<-c(26.6,29.3,10.2,34.7,15.8,22.1,27.6,34.9,32.6,22.0)$
$\operatorname{plot}(x, y)$
- Least-Squares Regression Line

```
x <- c(12, 15, 5, 17, 8, 10, 14, 16, 16, 9)
y <- c(26.6, 29.3, 10.2, 34.7, 15.8, 22.1, 27.6, 34.9, 32.6, 22.0)
plot(x, y)
model = Im(y ~ x)
abline(model)
```

 - Sum of the Square Residual
 y-c \((18,13,9,6,4)\)
 \(x<-c(1,3,3,6,7)\)
 y_hat=(-2.1675*x+18.67)
 y_hat
 sum((\(y\)-y_hat) \()^{\wedge} 2\))
 - Discrete Probability Distribution
 R code (Plot Discrete Probability Distribution):
x<-c(0,1,2,3)
y<-c(0.01,0.1,0.38,0.51)
plot(x,y,type="h", lwd=2,col="blue",ylab="p")
Mean and standard deviation:
$x<-c(0,1,2,3)$
y<-c(0.01,0.1,0.38,0.51)
weighted.mean(x, y)
library("Weighted.Desc.Stat")
w.sd(x, y)

- Binomial:

Finding probabilities. Copy and paste the R code on the right.

Probability	R code:
$P(x=5)$	dbinom $(5, n, p)$
$P(x \leq 5)$	sum $(d \operatorname{dbinom}(c(0: 5), n, p))$
$P(x<5)$	sum $(\operatorname{dbinom}(c(0: 4), n, p))$
$P(3 \leq x \leq 5)$	sum $(d \operatorname{binom}(c(3: 5), n, p))$
$P(x \geq 5)$	1-sum(dbinom $(c(0: 4), n, p))$
$P(x>5)$	1-sum(dbinom $(c(0: 5), n, p))$

- Normal distribution/ same code 8.1 just be careful with the standard deviation

Finding the area under the curve

Type of area	R code:
Area to the left	
$\mathrm{P}(\mathrm{x}<\mathrm{a})$ or $\mathrm{P}(\mathrm{x} \leq \mathrm{a})$	pnorm(a, μ, σ)
Area to the right	
$\mathrm{P}(\mathrm{x}>\mathrm{b})$ or $\mathrm{P}(\mathrm{x} \geq \mathrm{b})$	pnorm(b, μ, σ, lower.tail=FALSE)
Area in between	
$\begin{aligned} & \mathrm{P}(\mathrm{a}<\mathrm{x}<\mathrm{b}) \text { or } \\ & \mathrm{P}(\mathrm{a} \leq \mathrm{x} \leq \mathrm{b}) \end{aligned}$	pnorm(b, $\mu, \sigma)-\operatorname{pnorm}(\mathrm{a}, \mu, \sigma)$

Finding the x-value
Percentile, $\mathrm{k} \quad$ qnorm (k, μ, σ)

Finding a z-value (area to the right qnorm(k, lower.tail=FALSE)

- Chi-Square Test for Independence x<- matrix(c(600, 720, 93, 63, 142, 51, 112, 355, 119, 144, 459, 127), ncol = 4,byrow=TRUE)

```
colnames(x)<-c("Married", "Widowed", "Divorced/Separated", "Never Married")
rownames(x)<-c("Very Happy", "Pretty Happy", "Not Too Happy")
x<-as.table(x)
```

chisq.test(x)

- Expected count
x<- matrix(c(600, 720, 93, 63, 142, 51, 112, 355, 119, 144, 459, 127), ncol = 4,byrow=TRUE)

```
colnames(x)<-c("Married", "Widowed", "Divorced/Separated", "Never Married")
rownames(x)<-c("Very Happy", "Pretty Happy", "Not Too Happy")
x<-as.table(x)
c<-chisq.test(x)
round(c$expected,2)
```


- One-Way ANOVA

Example R code

1. create a data frame with one categorical and one numerical column.

* For categorical data use "", see code below:
x<-c("Face-Face","Face-Face","Face-Face","Face-Face","Face-Face","Face-
Face","Face-Face","Face-Face","Face-
Face","Hybrid","Hybrid","Hybrid","Hybrid","Hybrid","Hybrid","Hybrid","Hybrid","Hy brid","Online","Online","Online","Online","Online","Online","Online")
* For numerical data use the code below:
$\mathrm{y}<-\mathrm{c}(88,76,73,65,72,93,61,85,89,74,81,55,90,68,77,56,75$, 58,64,60,70,66, 91,91,64)

2. Create a table in r df<-data.frame(x,y)
3. Use the following to set your model and apply one-way ANOVA in R anova<-aov(y~x,data=df)
4. Print your summary summary(anova)
